Which Experiment Should I Choose?

So Many to Choose From....
So Many to Choose From...
99 parameter sets, and 144 pulse sequences with "HSQC"

<table>
<thead>
<tr>
<th>Parameter Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ea</td>
<td>phase sensitive using Echo/Antiecho method</td>
</tr>
<tr>
<td>ed</td>
<td>with multiplicity editing</td>
</tr>
<tr>
<td>et</td>
<td>phase sensitive using Echo/Antiecho-TPPI method</td>
</tr>
<tr>
<td>f3</td>
<td>using f3 - instead of f2 - channel</td>
</tr>
<tr>
<td>gp</td>
<td>using gradients with ":gp" syntax</td>
</tr>
<tr>
<td>ph</td>
<td>phase sensitive using States-TPPI, TPPI, States or QSEQ</td>
</tr>
<tr>
<td>pr</td>
<td>with presaturation</td>
</tr>
<tr>
<td>si</td>
<td>sensitivity improved</td>
</tr>
<tr>
<td>sp</td>
<td>using a shaped pulse</td>
</tr>
<tr>
<td>HSQCEDETGP</td>
<td>multiplicity edited HSQC using echo/antiecho detection and gradient pulses</td>
</tr>
</tbody>
</table>

The "Secret Decoder Ring"
<TopSpinHome>/exp/stand/nmr/lists/pp

"Pulprog.info"
New in TopSpin 3.0
“Show Recommended”

• “Recommended” parameter sets for some of the most commonly used Small Molecule Experiments

Not Rules Written in Stone
Just Things to Think About
1H Observe

PROTON
- zg30
- 1H acquire with 30° pulse
 - \(\cos(\theta) = e^{-(d1+aq)/T1} \)
 - 30° pulse is a nice compromise of signal and time for most T1 values
 - The zg pulse sequence uses a 90° pulse
- Not many options outside of D1, NS and SW/O1P
 - Keep in mind that DW=1/sw
 - Number of points stay constant, so changing sw affects the acquisition time.

WATERSUPP
- noesypppr1d
 - Presaturation applied during D1, and d8
 - Narrower residual water peak

1H Observe

Additional Parameter Sets for Automation

CMCQ_PROTON
- zg30
 - For quantitation purposes, so longer D1
 - AU program (cmcq_acquQuant) that does a pulse calibration on each sample

WATER
- zgcppr
 - Presaturation using composite 90° pulse
 - AU program (au_watersc) that does a scout scan to find the most intense signal and sets O1 there

LC1DWTDNC
- wetdc
 - WET with \(^{13}\text{C}\) decoupling during WET and AQ
 - AU program to automatically find solvent peaks and create the wet shape
 - Number of peaks to suppress defined by L30
13C Observe

- **C13CPD**
 - zgpg30
 - 13C acquire with 30° pulse, and power gated decoupling during D1, and AQ
 - Not many options outside of D1, NS and SW/O1P
 - Keep in mind that DW=1/sw
 - Number of points stay constant, so changing sw affects the acquisition time.
- **C13DEPT135**
 - deptsp135
 - Most common DEPT experiment showing all protonated carbons
 - Uses an adiabatic 180° pulse

13C Observe

Adiabatic Pulses

![Adiabatic Pulses Diagram](image)

Gibberellic Acid in Acetone
13C Observe
Adiabatic Pulses

- **dept135**
- **deptsp135**

- **C13CPD**
 - **zgpg30**
 - 13C acquire with 30° pulse, and power gated decoupling during D1, and AQ
 - Not many options outside of D1, NS and SW/O1P
 - Keep in mind that DW=1/sw
 - Number of points stay constant, so changing sw affects the acquisition time.
 - **C13DEPT135**
 - **deptsp135**
 - Most common DEPT experiment showing all protonated carbons
 - Uses an adiabatic 180° pulse
- **Other Sequences**
 - **zgig30**
 - Sequence with inverse gated decoupling, so only during acquisition
 - **dept45sp**
 - **dept90sp**
1H-1H Homonuclear 2D Experiments

Through Bond

\[
\begin{array}{cccccc}
& H & & H & & H \\
C & C & C & N & C & N \\
\end{array}
\]

COSY

- **COSYGPSW**
 - \texttt{cosygpmpqf} -- Magnitude mode COSY (qf) with gradients (gp) and purge pulses (pp)
 - Gradient selected, so ns \(\geq 1 \)
 - Purge pulse to reduce artifacts from not waiting long enough for D1
 - D1=0.1 sec, AQ=0.8

1H-1H Homonuclear 2D Experiments

COSY

- **COSYGPSW**
 - \texttt{cosygpmpqf} -- Magnitude mode COSY (qf) with gradients (gp) and purge pulses (pp)
 - Gradient selected, so ns \(\geq 1 \)
 - Purge pulse to reduce artifacts from not waiting long enough for D1
 - D1=0.1 sec, AQ=0.8

Caryophyllene Oxide in DMSO

- No Purge Pulses
- With Purge Pulses
1H-1H Homonuclear 2D Experiments

COSY

- **COSYGPDFPHSW**
 - *cosygpmfpphpp* -- COSY with gradient pulses (gp), multiple quantum filter (mf), phase sensitive (ph), and purge pulses (pp)

 - Double quantum filter simplifies the diagonal
 - Phase sensitive information (active/passive coupling)

 - Difficult for a beginner to phase

1H-1H Homonuclear 2D Experiments

Another COSY Option

- **cosygpmfppqf** -- Magnitude mode (qf) COSY, with gradients (gp), multiple quantum filter (mf), and purge pulses (pp)

 - Double quantum filter to simplify the diagonal
 - Still magnitude mode so no phase necessary

Cholesterol Acetate in CDCl₃

Caryophyllene Oxide in DMSO
1H-1H Homonuclear 2D Experiments

Another COSY Option

+ Double quantum filter to simplify the diagonal – Especially if the window function is adjusted to bring out more signal (ssb = 4)

- CMCse_COSY
 - cosyapmfppgf

 » Because the parameter set was designed for CMCse, there is more resolution (512 increments) than other parameter sets
 - Longer experiment
 - Brings out peaks that are weakly coupled

1H--1H Homonuclear 2D Experiments

Through Bond

COSY

TOCSY
1H-1H Homonuclear 2D Experiments

TOCSY

- **MLEVPHSW**
 - `mlevphpp` -- Homonuclear Hartman-Hahn using MLEV17 sequence, phase sensitive (ph), and purge pulses (pp)

- **MLEVPHPR**
 - `mlevphpr.2` -- Homonuclear Hartman-Hahn using MLEV17 sequence, phase sensitive (ph), and presat (pr),

 TOCSY Mixing Time is defined by d9
 - Default is 0.08 seconds

![Strychnine in CDCl₃](image)

1H-1H Homonuclear 2D Experiments

Through Bond

- **COSY**

Through Space

- **NOESY**
- **ROESY**
1H-1H Homonuclear 2D Experiments
NOESY/ROESY

- **NOESYPHSSW**
 - `noesyppphpp` -- NOESY with gradient pulses during mixing time, phase sensitive (ph), and purge pulses (pp)
 - Mixing time is defined by `d8`
 - Default is 0.3 seconds

- **ROESYPHSSW**
 - `roesypphp.2` -- ROESY sequence, phase sensitive (ph), and purge pulses (pp), using 180x-180x pulses for spin lock to suppress TOCSY artifacts (.2)
 - Mixing time is defined by `p15`
 - Default is 200 milliseconds

Zero Crossing Depends on:
- Magnetic Field
- Size of Molecule
- Temperature
- Viscosity

Around 1,000 – 2,000 Daltons

Pamoic Acid
MW=388
DMSO at 292 K

NOESY
400 MHz
ROESY
400 MHz

NOESY
500 MHz

Small Molecule
- **NOESY**
- **ROESY**

Large Molecule
+ **NOESY**
+ **ROESY**

Exchange Peak
+ **NOESY**
+ **ROESY**

High-Resolution NMR Techniques in Organic Chemistry
Timothy D.W. Claridge 1999
1H-13C Heteronuclear 2D Experiments

Single Bond

\[^1H \quad ^{13}C \]

HSQC

Multiplex

Edited

Matched Sweep

Adiabatic Pulses

Shaped Pulses for Inversion (sp)

Sensitivity Improved

COSY peak Suppression

(2.3/4)

Gradients in Back INEPT (2)

Shaped Pulses for Inversion and Refocusing (.2)

Shaped Pulses for Inversion (sp)

"Bare Bones"
1H-13C Heteronuclear 2D Experiments

HSQC

- **Adiabatic Pulses**
- **Sensitivity Improved**
- **Multiplicity Edited**

$_{^{1}H-^{13}C}$ HSQC – Things to Consider

HSQCEDETGPSISP_ADIA and HSQCETGPSISP_ADIA

- **Bare Bones**
 - hsqcph
 - hsqgph

- **Adiabatic Pulses**
 - Shaped Pulses for Inversion (sp)
 - Shaped Pulses for Inversion and Refocusing (sp2)

- **Sensitivity Improved**
 - COSY peak Suppression (sp)
 - Gradient in Back INEPT (sp)

- **Multiplicity Edited**
 - Shaped Pulses for Inversion (sp)
 - Multinet Spectral Editing Pulse (sp1)
1H-13C HSQC – Things to Consider

Multiplicity Edited or Not?

- HSQCETGP
 - hsvcetgp
 - Simple Gradient HSQC – non Edited
- HSQCEDETGP
 - hsvcdetgp
 - Simple Multiplicity Edited Gradient HSQC

1H-13C Heteronuclear 2D Experiments

HSQC

Adiabatic Pulses

Sensitivity Improved

Multiplicity Edited
"Matched Sweep" Adiabatic Pulses
Removing the J Dependence

\[\text{d21} = \frac{1}{2J_{zh}} \]
If \(J = 180 \text{ hz} \) \(\rightarrow \) 2.7ms
If \(J = 100 \text{ hz} \) \(\rightarrow \) 5 ms

The Matched Sweep Adiabatic Pulse
Sweeps through the \(^{13}\text{C}\) frequency range so that it inverts signals closer to when the time matches the \(\frac{1}{2J} \) condition

\(^1\text{H}-^{13}\text{C}\) HSQC – Things to Consider
Multiplicity Edited or Not?

- \text{hsqcetgp}
- \text{hsqcedetgp}
- \text{hsqcedetgpsp.3}

Menthyl Anthranilate in DMSO
\(^{1}\text{H}-^{13}\text{C} \) HSQC – Things to Consider

Multiplicity Edited or Not?

- **HSQCEDETGPSISP_ADIA**
 - `hsqcedetgpsisp2.3` w/ `bi_p5m4sp_4sp.2` decoupling
 - Multiplicity Edited (ed)
 + You get the DEPT type information in addition to the \(^{1}\text{H}-^{13}\text{C}\) connectivity
 - Adiabatic Pulses (sp) – Including a Matched Sweep Adiabatic (.3)
 + No significant loss in sensitivity
 - Sensitivity Improved (si)

- **HSQCETGPSISP_ADIA**
 - `hsqcetgpsisp2.2` w/ `bi_p5m4sp_4sp.2` decoupling
 - Not Multiplicity Edited
 + Simple, all peaks are Positive
 - Adiabatic Pulses (sp) – for both Inversion and Recovery (.2)
 - Sensitivity Improved (si)

\[d_{21} = \frac{1}{2J_{\text{HH}}} = 3.6 \text{ ms}\]

\[\delta = \text{gradient recovery delay} = 0.2\text{ms}\]

\(~ 7 \text{ ms longer of a sequence~}\)

Depending on the \(T_2\) relaxation rates of the molecule the non-edited version might be more sensitive:

But is it worth sacrificing the multiplicity information?
1H-13C HSQC – Things to Consider
Multiplicity Edited or Not?

Multiplicity Editing:
~ 7 ms longer of a sequence

1 mg/ml Quinidine
1st fid from an HSQC

1 mg/ml Quinidine, 1 hour 20 Min each HSQC w/ 9 hour DEPT as projection
1H-13C HSQC – Things to Consider

Multiplicity Edited or Not?

0.1 mg/ml Quinidine, 10 hour each HSQC spectra w/ no DEPT

1H-13C HSQC – Things to Consider

Matched Sweep Adiabatic Pulse?
1H-13C HSQC – Things to Consider
Benefit of Matched Sweep

Quinidine in DMSO

\[d_{21} = \frac{1}{2J_{\text{ch}}},\]

- If \(J = 180 \text{ hz} \rightarrow 2.7 \text{ ms} \)
- If \(J = 100 \text{ hz} \rightarrow 5 \text{ ms} \)

The Matched Sweep Adiabatic Pulse

Sweeps through the 13C frequency range so that it inverts signals closer to when the time matches the 1/2J condition.
1H-13C HSQC – Things to Consider

Matched Sweep Adiabatic Pulse?

- **hsqcedetgpsisp2.3**
 - Multiplicity Edited
 - Matched Sweep Adiabatic Pulse
 - + Works well when J scales with Chemical Shift
 - − Problematic when J differs

- **hsqcedetgpsisp2.2**
 - Multiplicity Edited
 - Regular Adiabatic Pulses
 - + Less Sensitive to deviations in J
 - − No benefit from the matched sweep for “normal” resonances

\[J_{hc} = 158 \text{ Hz} \]

α-Thujone in DMSO
1H-13C HSQC – Things to Consider

Sensitivity Improved or Not?

- **HSQCEDETGPSISP_ADIA**
 - hsqcedetgpsisp2.3
- **HSQCETGPSISP_ADIA**
 - hsqcetgpsisp2.2
 - Sensitivity Improved Element
 - Possible sensitivity improvement of \(\sim \sqrt{2} \)
- **HSQCEDETGPSP.3_ADIA**
 - hsqcedetgpssp.3
 - Multiplicity edited with Matched Sweep Adiabatic
- **HSQCETGPSP.2_ADIA**
 - hsqcetgpssp.2
 - Non Multiplicity Edited
 - No Sensitivity Improved Element
 - In general, less sensitive than the SI version
Strychnine in CDCl₃

$^{1}H-^{13}C$ HSQC – Things to Consider
Sensitivity Improved or Not?

$\text{d24} = \frac{1}{8J_{\text{HH}}} = 0.89m$

~2ms longer of a sequence

Depending on the T_2 relaxation rates of the molecule of interest, the non-si version might be actually be more sensitive.
$^{1}H - ^{13}C$ HSQC – Things to Consider
Sensitivity Improved or not?

d$24 = 1/8J_{xh}$
d$21 = 1/2J_{xh}$

Matched Sweep Adiabatic Pulses can be use (p31,sp10) to compensate for J_{xh} in d21.

But no compensation available for J_{xh} in d24

Strychnine in CDCl$_3$
1H-13C HSQC – Things to Consider
Sensitivity Improved or Not?

- **HSQCEDETGPSISP_ADIA**
 - hsqcdetgpsisp2.3
 - Multiplicity Edited
 - "Sensitivity Improved" INEPT element
 - Matched Sweep Adiabatic Pulses
 - + More Sensitive
 - - Non quantitative

- **HSQCEDETGPSP.3_ADIA** or CMCse_HSQC
 - hsqcedtgssp.3
 - Multiplicity Edited
 - Without “Sensitivity Improved” INEPT element
 - Matched Sweep Adiabatic Pulses
 - - Less Sensitive
 - + Quantitative integrals
 - Used in CMCse

1H-13C HSQC – Things to Consider
COSY Peak Suppression

- Bare Bones
- hsqph
- hsqppph
- Adiabatic Pulses
- Sensitivity Improved
- Multiplicity Edited
- Shaped Pulses for Inversion (2)
- Shaped Pulses for Inversion and Refocusing (1,2)
- Gradient in Block INEPT (2,4)
- COSY peak Suppression (2,4)
- Shaped Pulses for Inversion (4)
- Matched Sweep Adiabatic Pulses (4)
1H-13C HSQC – Things to Consider

COSY Peak Suppression

- **hsqcedetgpsisp2.4**
 - Sensitivity Improved
 - Multiplicity Edited
 - Matched Sweep
 - COSY Suppression

- **hsqctgpsisp2.3**
 - Sensitivity Improved
 - Non Multiplicity Edited
 - COSY Suppression

+ Removes the COSY artifacts that arise when using the “si” versions
- Less sensitive than regular “si” versions

Menthyl Anthranilate in DMSO

Menthyl Anthranilate in DMSO
1H-13C HSQC – Things to Consider

Long Refocusing Pulse

Adiabatic Pulses:
- Inversion (p14) = 0.5 ms
- Refocusing (p24) = 2 ms

Hard 180 Pulse:
- 16 us

Sensitivity Improved

Multiplicity Edited

13C Labeled Sucrose
1H-13C HSQC – Things to Consider

When is Simple Better?

- Adiabatic Pulses
- Sensitivity Improved
- Multiplicity Edited

- Shape then Pulse for Inversion (sp)
- Shape then Pulse for Refocusing (2,2)
- Gradient in Black (INEPT 2,2)
- Shape then Pulse for Inversion (sp)
- Matched Sequence Adiabatic Pulses (1,2)

d21 = 1/2Jxh = 3.6 ms

d24 = 1/8Jxh = 0.89 ms

Adiabatic pulses:

- Inversion = .5 ms
- Refocusing = 2 ms

Hard 180 Pulse:

- 16 us
HSQC – Things to Consider
When Is Simple Better?

$^1\text{H} - ^{11}\text{B}$ Spectra

$^1\text{H} - ^{13}\text{C}$ Heteronuclear 2D Experiments

Single Bond
HSQC/HMQC

Multiple Bond
HMBC
1H-13C Heteronuclear 2D Experiments

HMBC

- **HMBCGP**
 - hmbcgplpndqf
 - Gradients for coherence selection (gp)
 - Low pass filter (lp)
 - No decoupling during acquisition (nd)
 - Magnitude Mode (qf)
 - Simple
 - No 180° pulses

- **HMBCETGPL3ND**
 - hmbcetapl3nd
 - Echo Anti Echo (et)
 - Gradients for coherence selection (gp)
 - 3rd order Low Pass filter (l3)
 - Better suppression of 1J correlation peaks
 - More sensitive because of Echo Anti Echo Detection
 - More difficult to process (xfb + xf2m)

1H-13C Heteronuclear 2D Experiments

HMBC - Sensitivity

Quinidine in DMSO 1 mg/ ml

32 Scans, 256 Increments = 6 hours each
1H-13C Heteronuclear 2D Experiments

HMBC – Low Pass Filter

- \(d_2 = \frac{1}{2J_{xh}} \)

hmbcgplpndqf

- \(\Delta_1 = \frac{1}{2(J_{xh-min} + 0.07(J_{xh-max} - J_{xh-min}))} \)
- \(\Delta_2 = \frac{1}{J_{xh-min} + J_{xh-max}} \)
- \(\Delta_3 = \frac{1}{2(J_{xh-max} - 0.07(J_{xh-max} - J_{xh-min}))} \)

hmbcetgp3nld

1H-13C Heteronuclear 2D Experiments

HMBC – Suppression of \(^1J \) correlations

- \(^1J_{xh} = 145 \text{ Hz} \)
- \(^1J_{xh \text{ (max)}} = 170 \text{ Hz} \)
- \(^1J_{xh \text{ (min)}} = 120 \text{ Hz} \)
- \(^1J_{xh} = 145 \text{ Hz} \)

Gibberellic Acid in Acetone

Long Range \(J_{xh} \)

- \(8 \text{ Hz} \)
$^{1}H-^{13}C$ Heteronuclear 2D Experiments

Another HMBC option

- **hmbcetgpnd**
 - Gradients for coherence selection
 - Echo Anti Echo
 - Similar sensitivity to hmbcetgpl3nd
 - No Low Pass filter
 - ^{1}J correlations are often useful when interpreting the data instead of the HSQC

![Quinidine in DMSO](image)

Quinidine in DMSO
1 mg/ ml

Heteronuclear 2D Experiments

Not Just ^{13}C – $^{1}H/^{15}N$ also

- **HMBCGP_15N**
 - **hmbcgpndaf**
 - ^{15}N is routed through f2
 - Gradients for coherence selection
 - Ratio set to select for $^{1}H/^{15}N$ instead of $^{1}H/^{13}C$
 - Other nuclei are possible with the AU program "gradratio"

- **HSQCETGP_15N**
 - **hsqcetpsi2**
 - ^{15}N is routed through f2
 - Echo-anti echo
 - Sensitivity improved
 - Gradients in the back inept
 - Gradients for coherence selection
 - Ratio set to select for $^{1}H/^{15}N$
1H-13C Heteronuclear 2D Experiments

HSQC_TOCSY_ADIA

- **HSQC_TOCSY_ADIA**
 - hsqcdietgpsisp.2
 - DIPS12 for Hartman-Hahn Mixing
 - Using adiabatic pulses
 - Sensitivity Improved
 - All Peaks Positive

- **Other Options**
 - hsqcdietgpsisp.3
 - Inversion of directly coupled protons
 - "HSQC" are +
 - "TOCSY" are -
 - Fully Edited
 - "HSQC" → CH/CH₃ + & CH₂ -
 - "TOCSY" → CH/CH₃ - & CH₂ +

1H-13C Heteronuclear 2D Experiments

HSQC_TOCSY_ADIA

Menthyl Anthranilate in DMSO

TOCSY

HSQC
1H-13C Heteronuclear 2D Experiments
HSQC_TOCSY_ADIA

New in TopSpin 3.0
“Show Recommended”

But There’s More If These Don’t Answer Your Question
1H-13C Heteronuclear 2D Experiments

HMBC

Strychnine in CDCl₃

HSQC

HMBC

How Do I Know 2J vs 3J?

H2BC (AKA HMQC-COSY)

Heteronuclear 2 Bond Correlation

Strychnine in CDCl₃

HSQC

h2bcetgpl3
Experimental Details

Advantages of the H2BC:

- It helps solve the problem of distinguishing two- and three-bond correlations in HMBC or HSQC-TOCSY
- Is independent of occasionally vanishing $^2J_{CH}$ coupling constants, which alleviates the problem of missing two-bond correlations in HMBC spectra

Disadvantages of the H2BC:

- Only protonated carbons are observed (no $^4\beta$)
- Relies on $^3J_{HH}$ to get “2 Bond” correlations
 - $^4J_{HH}$ Couplings are not uncommon, and if large enough (>1Hz) will also be observed
- No Parameter Set in TopSpin
 - Contact the Applab, we do have one
- Pulse Sequence → h2bcetgpl3
- Processing → xfb + xf2m

INADEQUATE

Advantages:

- Information rich!

Disadvantages:

- Insensitive
- Relies on 13C next to another 13C
- 100 mg/ml Strychnine on a RT 400 MHz BBFO Smart Probe → 2.5 DAYS
- Single Scan 1D-13C S:N of 100:1
Experimental Details

- **Pulse Sequence:**
 - inadphsp

- **Experimental Details:**
 - SW in F2 = 13C Spectrum
 - SW in F1 = 2 x 13C SW in F2

- **Referencing:**
 - Center of spectrum in F1 = 2x O1p

How to Interpret

Chemical Shift in Indirect Dimension = $C_a + C_b$

15→14→13→8
15→16→7→8
13→12→11
17→18
INADEQUATE

Benefit of Phase Sensitive

Chemical Shift in Indirect Dimension = C_a + C_b

Correlation at 51.8 ppm and 95 ppm
C7 = 51.9 ppm + C17 = 42.9 ppm –> 94.8

INADEQUATE

Experimental Details - Folding

- Pulse Sequence:
 - inadphsp
- Experimental Details:
 - SW in F2 & F1 = 13C Spectrum
- Referencing:
 - Center of spectrum in F1 = 2x O1p
- Position of Folded Peaks = SW + C_a + C_b
INADEQUATE
Benefit of Folding

Chemical Shift in Indirect Dimension = SW + C_a + C_b

Correlation at 51.9 ppm and 255 ppm
C7 = 51.9 ppm + C17 = 42.9 ppm + SW = 160 ppm → 254.8

ADEQUATE
Proton Detected 13C-13C Correlations
Adequate Proton Detected 13C-13C Correlations

1,1-ADQUATE

adeq11etgpsp

50 mg/ml Strychnine in CDCl$_3$

Room Temp 400 MHz BBFO

Smart Probe \rightarrow 16 hours

Correlation at H_a / C_a + C_b

From HSQC \rightarrow $H_4 = 8.1$ ppm $C_4 = 116.17$ ppm

Adequate Peaks at 244.5 ppm and 258.3 ppm

C_4 Next to Carbons at 127.8 (C3) and 142.13 (C5)

Adequate Proton Detected 13C-13C Correlations

1,n-ADQUATE

adeq1netgpsp

50 mg/ml Strychnine in CDCl$_3$

500 MHz Prodigy \rightarrow 4 days 4 Hours

Correlation at H_a / C_a + C_b

From HSQC \rightarrow $H_4 = 8.1$ ppm $C_4 = 116.17$ ppm

Adequate Peaks at 238.4 ppm and 244.7 ppm

C_4 Next to Carbons at 124.0 (C1) and 132.67 (C3)
ADEQUATE
Proton Detected \(^{13}\text{C}-^{13}\text{C}\) Correlations

Refocused 1,1-ADQUATE
adeq11etgprdsp.2

50 mg/ml Strychnine in CDCl3
Room Temp 400 MHz BBFO
Smart Probe → 16 hours

Correlation at \(H_3 / C_8\)
Can Interpret like an HMBC/H2BC
Know it is Neighboring \(^{13}\text{C} (J_{CC})\)
Unlike H2BC – correlations to 4 Carbons are possible